1586

10009046

A Mixed Integer Linear Programming Model for Flexible Job Shop Scheduling Problem

In this paper, a mixed integer linear programming (MILP) model is presented to solve the flexible job shop scheduling problem (FJSP). This problem is one of the hardest combinatorial problems. The objective considered is the minimization of the makespan. The computational results of the proposed MILP model were compared with those of the best known mathematical model in the literature in terms of the computational time. The results show that our model has better performance with respect to all the considered performance measures including relative percentage deviation (RPD) value, number of constraints, and total number of variables. By this improved mathematical model, larger FJS problems can be optimally solved in reasonable time, and therefore, the model would be a better tool for the performance evaluation of the approximation algorithms developed for the problem.

1585

10009051

Applying p-Balanced Energy Technique to Solve Liouville-Type Problems in Calculus

We are interested in solving Liouville-type problems to explore constancy properties for maps or differential forms on Riemannian manifolds. Geometric structures on manifolds, the existence of constancy properties for maps or differential forms, and energy growth for maps or differential forms are intertwined. In this article, we concentrate on discovery of solutions to Liouville-type problems where manifolds are Euclidean spaces (i.e. flat Riemannian manifolds) and maps become real-valued functions. Liouville-type results of vanishing properties for functions are obtained. The original work in our research findings is to extend the q-energy for a function from finite in Lq space to infinite in non-Lq space by applying p-balanced technique where q = p = 2. Calculation skills such as Hölder's Inequality and Tests for Series have been used to evaluate limits and integrations for function energy. Calculation ideas and computational techniques for solving Liouville-type problems shown in this article, which are utilized in Euclidean spaces, can be universalized as a successful algorithm, which works for both maps and differential forms on Riemannian manifolds. This innovative algorithm has a far-reaching impact on research work of solving Liouville-type problems in the general settings involved with infinite energy. The p-balanced technique in this algorithm provides a clue to success on the road of q-energy extension from finite to infinite.

1584

10008748

On the Bootstrap P-Value Method in Identifying out of Control Signals in Multivariate Control Chart

In any production process, every product is aimed to attain a certain standard, but the presence of assignable cause of variability affects our process, thereby leading to low quality of product. The ability to identify and remove this type of variability reduces its overall effect, thereby improving the quality of the product. In case of a univariate control chart signal, it is easy to detect the problem and give a solution since it is related to a single quality characteristic. However, the problems involved in the use of multivariate control chart are the violation of multivariate normal assumption and the difficulty in identifying the quality characteristic(s) that resulted in the out of control signals. The purpose of this paper is to examine the use of non-parametric control chart (the bootstrap approach) for obtaining control limit to overcome the problem of multivariate distributional assumption and the p-value method for detecting out of control signals. Results from a performance study show that the proposed bootstrap method enables the setting of control limit that can enhance the detection of out of control signals when compared, while the p-value method also enhanced in identifying out of control variables.

1583

10008947

Total Chromatic Number of Δ-Claw-Free 3-Degenerated Graphs

The total chromatic number χ"(G) of a graph G is the
minimum number of colors needed to color the elements (vertices
and edges) of G such that no incident or adjacent pair of elements
receive the same color Let G be a graph with maximum degree Δ(G).
Considering a total coloring of G and focusing on a vertex with
maximum degree. A vertex with maximum degree needs a color and
all Δ(G) edges incident to this vertex need more Δ(G) + 1 distinct
colors. To color all vertices and all edges of G, it requires at least
Δ(G) + 1 colors. That is, χ"(G) is at least Δ(G) + 1. However,
no one can find a graph G with the total chromatic number which
is greater than Δ(G) + 2. The Total Coloring Conjecture states that
for every graph G, χ"(G) is at most Δ(G) + 2. In this paper, we prove that the Total Coloring Conjectur for a
Δ-claw-free 3-degenerated graph. That is, we prove that the total
chromatic number of every Δ-claw-free 3-degenerated graph is at
most Δ(G) + 2.

1582

10008697

Similarity Based Membership of Elements to Uncertain Concept in Information System

The process of determining the degree of membership for an element to an uncertain concept has been found in many ways, using equivalence and symmetry relations in information systems. In the case of similarity, these methods did not take into account the degree of symmetry between elements. In this paper, we use a new definition for finding the membership based on the degree of symmetry. We provide an example to clarify the suggested methods and compare it with previous methods. This method opens the door to more accurate decisions in information systems.

1581

10008516

Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries

Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.

1580

10008565

Fuzzy Logic and Control Strategies on a Sump

Sump can be defined as a reservoir which contains slurry; a mixture of solid and liquid or water, in it. Sump system is an unsteady process owing to the level response. Sump level shall be monitored carefully by using a good controller to avoid overflow. The current conventional controllers would not be able to solve problems with large time delay and nonlinearities, Fuzzy Logic controller is tested to prove its ability in solving the listed problems of slurry sump. Therefore, in order to justify the effectiveness and reliability of these controllers, simulation of the sump system was created by using MATLAB and the results were compared. According to the result obtained, instead of Proportional-Integral (PI) and Proportional-Integral and Derivative (PID), Fuzzy Logic controller showed the best result by offering quick response of 0.32 s for step input and 5 s for pulse generator, by producing small Integral Absolute Error (IAE) values that are 0.66 and 0.36 respectively.

1579

10008601

A Note on MHD Flow and Heat Transfer over a Curved Stretching Sheet by Considering Variable Thermal Conductivity

The mixed convective flow of MHD incompressible, steady boundary layer in heat transfer over a curved stretching sheet due to temperature dependent thermal conductivity is studied. We use curvilinear coordinate system in order to describe the governing flow equations. Finite difference solutions with central differencing have been used to solve the transform governing equations. Numerical results for the flow velocity and temperature profiles are presented as a function of the non-dimensional curvature radius. Skin friction coefficient and local Nusselt number at the surface of the curved sheet are discussed as well.

1578

10008777

Numerical Solution of Steady Magnetohydrodynamic Boundary Layer Flow Due to Gyrotactic Microorganism for Williamson Nanofluid over Stretched Surface in the Presence of Exponential Internal Heat Generation

This paper focuses on the study of two dimensional magnetohydrodynamic (MHD) steady incompressible viscous Williamson nanofluid with exponential internal heat generation containing gyrotactic microorganism over a stretching sheet. The governing equations and auxiliary conditions are reduced to a set of non-linear coupled differential equations with the appropriate boundary conditions using similarity transformation. The transformed equations are solved numerically through spectral relaxation method. The influences of various parameters such as Williamson parameter γ, power constant λ, Prandtl number Pr, magnetic field parameter M, Peclet number Pe, Lewis number Le, Bioconvection Lewis number Lb, Brownian motion parameter Nb, thermophoresis parameter Nt, and bioconvection constant σ are studied to obtain the momentum, heat, mass and microorganism distributions. Moment, heat, mass and gyrotactic microorganism profiles are explored through graphs and tables. We computed the heat transfer rate, mass flux rate and the density number of the motile microorganism near the surface. Our numerical results are in better agreement in comparison with existing calculations. The Residual error of our obtained solutions is determined in order to see the convergence rate against iteration. Faster convergence is achieved when internal heat generation is absent. The effect of magnetic parameter M decreases the momentum boundary layer thickness but increases the thermal boundary layer thickness. It is apparent that bioconvection Lewis number and bioconvection parameter has a pronounced effect on microorganism boundary. Increasing brownian motion parameter and Lewis number decreases the thermal boundary layer. Furthermore, magnetic field parameter and thermophoresis parameter has an induced effect on concentration profiles.

1577

10008424

Stochastic Repair and Replacement with a Single Repair Channel

This paper examines the behavior of a system, which upon failure is either replaced with certain probability p or imperfectly repaired with probability q. The system is analyzed using Kolmogorov's forward equations method; the analytical expression for the steady state availability is derived as an indicator of the system’s performance. It is found that the analysis becomes more complex as the number of imperfect repairs increases. It is also observed that the availability increases as the number of states and replacement probability increases. Using such an approach in more complex configurations and in dynamic systems is cumbersome; therefore, it is advisable to resort to simulation or heuristics. In this paper, an example is provided for demonstration.

1576

10008892

Optimal Portfolio Selection in a DC Pension with Multiple Contributors and the Impact of Stochastic Additional Voluntary Contribution on the Optimal Investment Strategy

In this paper, we studied the optimal portfolio selection in a defined contribution (DC) pension scheme with multiple contributors under constant elasticity of variance (CEV) model and the impact of stochastic additional voluntary contribution on the investment strategies. We assume that the voluntary contributions are stochastic and also consider investments in a risk free asset and a risky asset to increase the expected returns of the contributing members. We derived a stochastic differential equation which consists of the members’ monthly contributions and the invested fund and obtained an optimized problem with the help of Hamilton Jacobi Bellman equation. Furthermore, we find an explicit solution for the optimal investment strategy with stochastic voluntary contribution using power transformation and change of variables method and the corresponding optimal fund size was obtained. We discussed the impact of the voluntary contribution on the optimal investment strategy with numerical simulations and observed that the voluntary contribution reduces the optimal investment strategy of the risky asset.

1575

10008295

Mathematical Modeling and Analysis of Forced Vibrations in Micro-Scale Microstretch Thermoelastic Simply Supported Beam

The present paper deals with the flexural vibrations
of homogeneous, isotropic, generalized micropolar microstretch
thermoelastic thin Euler-Bernoulli beam resonators, due to
Exponential time varying load. Both the axial ends of the
beam are assumed to be at simply supported conditions. The
governing equations have been solved analytically by using Laplace
transforms technique twice with respect to time and space variables
respectively. The inversion of Laplace transform in time domain
has been performed by using the calculus of residues to obtain
deflection.The analytical results have been numerically analyzed with
the help of MATLAB software for magnesium like material. The
graphical representations and interpretations have been discussed
for Deflection of beam under Simply Supported boundary condition
and for distinct considered values of time and space as well. The
obtained results are easy to implement for engineering analysis and
designs of resonators (sensors), modulators, actuators.

1574

10008281

All-or-None Principle and Weakness of Hodgkin-Huxley Mathematical Model

Mathematical and computational modellings are the necessary tools for reviewing, analysing, and predicting processes and events in the wide spectrum range of scientific fields. Therefore, in a field as rapidly developing as neuroscience, the combination of these two modellings can have a significant role in helping to guide the direction the field takes. The paper combined mathematical and computational modelling to prove a weakness in a very precious model in neuroscience. This paper is intended to analyse all-or-none principle in Hodgkin-Huxley mathematical model. By implementation the computational model of Hodgkin-Huxley model and applying the concept of all-or-none principle, an investigation on this mathematical model has been performed. The results clearly showed that the mathematical model of Hodgkin-Huxley does not observe this fundamental law in neurophysiology to generating action potentials. This study shows that further mathematical studies on the Hodgkin-Huxley model are needed in order to create a model without this weakness.

1573

10008987

Investigating the Dynamics of Knowledge Acquisition in Learning Using Differential Equations

A mathematical model for knowledge acquisition in
teaching and learning is proposed. In this study we adopt the
mathematical model that is normally used for disease modelling
into teaching and learning. We derive mathematical conditions which
facilitate knowledge acquisition. This study compares the effects
of dropping out of the course at early stages with later stages of
learning. The study also investigates effect of individual interaction
and learning from other sources to facilitate learning. The study fits
actual data to a general mathematical model using Matlab ODE45
and lsqnonlin to obtain a unique mathematical model that can be
used to predict knowledge acquisition. The data used in this study
was obtained from the tutorial test results for mathematics 2 students
from the Central University of Technology, Free State, South Africa
in the department of Mathematical and Physical Sciences. The study
confirms already known results that increasing dropout rates and
forgetting taught concepts reduce the population of knowledgeable
students. Increasing teaching contacts and access to other learning
materials facilitate knowledge acquisition. The effect of increasing
dropout rates is more enhanced in the later stages of learning
than earlier stages. The study opens up a new direction in further
investigations in teaching and learning using differential equations.

1572

10007933

Forecasting the Volatility of Geophysical Time Series with Stochastic Volatility Models

This work is devoted to the study of modeling
geophysical time series. A stochastic technique with time-varying
parameters is used to forecast the volatility of data arising in
geophysics. In this study, the volatility is defined as a logarithmic
first-order autoregressive process. We observe that the inclusion of
log-volatility into the time-varying parameter estimation significantly
improves forecasting which is facilitated via maximum likelihood
estimation. This allows us to conclude that the estimation algorithm
for the corresponding one-step-ahead suggested volatility (with ±2
standard prediction errors) is very feasible since it possesses good
convergence properties.

1571

10007982

Analytical Formulae for the Approach Velocity Head Coefficient

Critical depth meters, such as abroad crested weir, Venture Flume and combined control flume are standard devices for measuring flow in open channels. The discharge relation for these devices cannot be solved directly, but it needs iteration process to account for the approach velocity head. In this paper, analytical solution was developed to calculate the discharge in a combined critical depth-meter namely, a hump combined with lateral contraction in rectangular channel with subcritical approach flow including energy losses. Also analytical formulae were derived for approach velocity head coefficient for different types of critical depth meters. The solution was derived by solving a standard cubic equation considering energy loss on the base of trigonometric identity. The advantage of this technique is to avoid iteration process adopted in measuring flow by these devices. Numerical examples are chosen for demonstration of the proposed solution.

1570

10008113

Subclasses of Bi-Univalent Functions Associated with Hohlov Operator

The coefficients estimate problem for Taylor-Maclaurin series is still an open problem especially for a function in the subclass of bi-univalent functions. A function f ϵ A is said to be bi-univalent in the open unit disk D if both f and f-1 are univalent in D. The symbol A denotes the class of all analytic functions f in D and it is normalized by the conditions f(0) = f’(0) – 1=0. The class of bi-univalent is denoted by The subordination concept is used in determining second and third Taylor-Maclaurin coefficients. The upper bound for second and third coefficients is estimated for functions in the subclasses of bi-univalent functions which are subordinated to the function φ. An analytic function f is subordinate to an analytic function g if there is an analytic function w defined on D with w(0) = 0 and |w(z)| < 1 satisfying f(z) = g[w(z)]. In this paper, two subclasses of bi-univalent functions associated with Hohlov operator are introduced. The bound for second and third coefficients of functions in these subclasses is determined using subordination. The findings would generalize the previous related works of several earlier authors.

1569

10008379

Generalized Fuzzy Subalgebras and Fuzzy Ideals of BCI-Algebras with Operators

The aim of this paper is to introduce the concepts of generalized fuzzy subalgebras, generalized fuzzy ideals and generalized fuzzy quotient algebras of BCI-algebras with operators, and to investigate their basic properties.

1568

10007960

Generalized Rough Sets Applied to Graphs Related to Urban Problems

Branch of modern mathematics, graphs represent instruments
for optimization and solving practical applications in
various fields such as economic networks, engineering, network optimization,
the geometry of social action, generally, complex systems
including contemporary urban problems (path or transport efficiencies,
biourbanism, & c.). In this paper is studied the interconnection
of some urban network, which can lead to a simulation problem of a
digraph through another digraph. The simulation is made univoc or
more general multivoc. The concepts of fragment and atom are very
useful in the study of connectivity in the digraph that is simulation
- including an alternative evaluation of k- connectivity. Rough set
approach in (bi)digraph which is proposed in premier in this paper
contribute to improved significantly the evaluation of k-connectivity.
This rough set approach is based on generalized rough sets - basic
facts are presented in this paper.

1567

10008011

Generalized π-Armendariz Authentication Cryptosystem

Algebra is one of the important fields of mathematics. It concerns with the study and manipulation of mathematical symbols. It also concerns with the study of abstractions such as groups, rings, and fields. Due to the development of these abstractions, it is extended to consider other structures, such as vectors, matrices, and polynomials, which are non-numerical objects. Computer algebra is the implementation of algebraic methods as algorithms and computer programs. Recently, many algebraic cryptosystem protocols are based on non-commutative algebraic structures, such as authentication, key exchange, and encryption-decryption processes are adopted. Cryptography is the science that aimed at sending the information through public channels in such a way that only an authorized recipient can read it. Ring theory is the most attractive category of algebra in the area of cryptography. In this paper, we employ the algebraic structure called skew -Armendariz rings to design a neoteric algorithm for zero knowledge proof. The proposed protocol is established and illustrated through numerical example, and its soundness and completeness are proved.

1566

10008378

(∈,∈∨q)-Fuzzy Subalgebras and Fuzzy Ideals of BCI-Algebras with Operators

The aim of this paper is to introduce the concepts of (∈, ∈∨q)-fuzzy subalgebras, (∈,∈∨q)-fuzzy ideals and (∈,∈∨q)-fuzzy quotient algebras of BCI-algebras with operators, and to investigate their basic properties.

1565

10007698

Zero Divisor Graph of a Poset with Respect to Primal Ideals

In this paper, we extend the concepts of primal and
weakly primal ideals for posets. Further, the diameter of the zero
divisor graph of a poset with respect to a non-primal ideal is
determined. The relation between primary and primal ideals in posets
is also studied.

1564

10007741

Fourier Galerkin Approach to Wave Equation with Absorbing Boundary Conditions

Numerical computation of wave propagation in a large
domain usually requires significant computational effort. Hence, the
considered domain must be truncated to a smaller domain of interest.
In addition, special boundary conditions, which absorb the outward
travelling waves, need to be implemented in order to describe the
system domains correctly. In this work, the linear one dimensional
wave equation is approximated by utilizing the Fourier Galerkin
approach. Furthermore, the artificial boundaries are realized with
absorbing boundary conditions. Within this work, a systematic work
flow for setting up the wave problem, including the absorbing
boundary conditions, is proposed. As a result, a convenient modal
system description with an effective absorbing boundary formulation
is established. Moreover, the truncated model shows high accuracy
compared to the global domain.

1563

10007401

Basket Option Pricing under Jump Diffusion Models

Pricing financial contracts on several underlying assets
received more and more interest as a demand for complex derivatives.
The option pricing under asset price involving jump diffusion
processes leads to the partial integral differential equation (PIDEs),
which is an extension of the Black-Scholes PDE with a new integral
term. The aim of this paper is to show how basket option prices
in the jump diffusion models, mainly on the Merton model, can
be computed using RBF based approximation methods. For a test
problem, the RBF-PU method is applied for numerical solution
of partial integral differential equation arising from the two-asset
European vanilla put options. The numerical result shows the
accuracy and efficiency of the presented method.

1562

10007822

Secure E-Pay System Using Steganography and Visual Cryptography

Today’s internet world is highly prone to various online attacks, of which the most harmful attack is phishing. The attackers host the fake websites which are very similar and look alike. We propose an image based authentication using steganography and visual cryptography to prevent phishing. This paper presents a secure steganographic technique for true color (RGB) images and uses Discrete Cosine Transform to compress the images. The proposed method hides the secret data inside the cover image. The use of visual cryptography is to preserve the privacy of an image by decomposing the original image into two shares. Original image can be identified only when both qualified shares are simultaneously available. Individual share does not reveal the identity of the original image. Thus, the existence of the secret message is hard to be detected by the RS steganalysis.

1561

10007927

Multisymplectic Geometry and Noether Symmetries for the Field Theories and the Relativistic Mechanics

The problem of symmetries in field theory has been analyzed using geometric frameworks, such as the multisymplectic models by using in particular the multivector field formalism. In this paper, we expand the vector fields associated to infinitesimal symmetries which give rise to invariant quantities as Noether currents for classical field theories and relativistic mechanic using the multisymplectic geometry where the Poincaré-Cartan form has thus been greatly simplified using the Second Order Partial Differential Equation (SOPDE) for multi-vector fields verifying Euler equations. These symmetries have been classified naturally according to the construction of the fiber bundle used. In this work, unlike other works using the analytical method, our geometric model has allowed us firstly to distinguish the angular moments of the gauge field obtained during different transformations while these moments are gathered in a single expression and are obtained during a rotation in the Minkowsky space. Secondly, no conditions are imposed on the Lagrangian of the mechanics with respect to its dependence in time and in qi, the currents obtained naturally from the transformations are respectively the energy and the momentum of the system.

1560

10008068

Turing Pattern in the Oregonator Revisited

In this paper, we reconsider the analysis of the Oregonator model. We highlight an error in this analysis which leads to an incorrect depiction of the parameter region in which diffusion driven instability is possible. We believe that the cause of the oversight is the complexity of stability analyses based on eigenvalues and the dependence on parameters of matrix minors appearing in stability calculations. We regenerate the parameter space where Turing patterns can be seen, and we use the common Lyapunov function (CLF) approach, which is numerically reliable, to further confirm the dependence of the results on diffusion coefficients intensities.

1559

10008144

A Study of Hamilton-Jacobi-Bellman Equation Systems Arising in Differential Game Models of Changing Society

This paper is concerned with a system of
Hamilton-Jacobi-Bellman equations coupled with an autonomous
dynamical system. The mathematical system arises in the differential
game formulation of political economy models as an infinite-horizon
continuous-time differential game with discounted instantaneous
payoff rates and continuously and discretely varying state variables.
The existence of a weak solution of the PDE system is proven and
a computational scheme of approximate solution is developed for a
class of such systems. A model of democratization is mathematically
analyzed as an illustration of application.

1558

10008907

Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Crop yield prediction is a paramount issue in
agriculture. The main idea of this paper is to find out efficient
way to predict the yield of corn based meteorological records.
The prediction models used in this paper can be classified into
model-driven approaches and data-driven approaches, according to
the different modeling methodologies. The model-driven approaches are based on crop mechanistic
modeling. They describe crop growth in interaction with their
environment as dynamical systems. But the calibration process of
the dynamic system comes up with much difficulty, because it
turns out to be a multidimensional non-convex optimization problem.
An original contribution of this paper is to propose a statistical
methodology, Multi-Scenarios Parameters Estimation (MSPE), for the
parametrization of potentially complex mechanistic models from a
new type of datasets (climatic data, final yield in many situations).
It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction
is free of the complex biophysical process. But it has some strict
requirements about the dataset.
A second contribution of the paper is the comparison of these
model-driven methods with classical data-driven methods. For this
purpose, we consider two classes of regression methods, methods
derived from linear regression (Ridge and Lasso Regression, Principal
Components Regression or Partial Least Squares Regression) and
machine learning methods (Random Forest, k-Nearest Neighbor,
Artificial Neural Network and SVM regression).
The dataset consists of 720 records of corn yield at county scale
provided by the United States Department of Agriculture (USDA) and
the associated climatic data. A 5-folds cross-validation process and
two accuracy metrics: root mean square error of prediction(RMSEP),
mean absolute error of prediction(MAEP) were used to evaluate the
crop prediction capacity.
The results show that among the data-driven approaches, Random
Forest is the most robust and generally achieves the best prediction
error (MAEP 4.27%). It also outperforms our model-driven approach
(MAEP 6.11%). However, the method to calibrate the mechanistic
model from dataset easy to access offers several side-perspectives.
The mechanistic model can potentially help to underline the stresses
suffered by the crop or to identify the biological parameters of interest
for breeding purposes. For this reason, an interesting perspective is
to combine these two types of approaches.

1557

10007224

Effect of Manganese Doping on Ferrroelectric Properties of (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 Lead-Free Piezoceramic

Alkaline niobate (Na0.5K0.5)NbO3 ceramic system has attracted major attention in view of its potential for replacing the highly toxic but superior lead zirconate titanate (PZT) system for piezoelectric applications. Recently, a more detailed study of this system reveals that the ferroelectric and piezoelectric properties are optimized in the Li- and V-modified system having the composition (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3. In the present work, we further study the pyroelectric behaviour of this composition along with another doped with Mn4+. So, (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 + x MnO2 (x = 0, and 0.01 wt. %) ceramic compositions were synthesized by conventional ceramic processing route. X-ray diffraction study reveals that both the undoped and Mn4+-doped ceramic samples prepared crystallize into a perovskite structure having orthorhombic symmetry. Dielectric study indicates that Mn4+ doping has little effect on both the Curie temperature (Tc) and tetragonal-orthorhombic phase transition temperature (Tot). The bulk density, room-temperature dielectric constant (εRT), and room-c The room-temperature coercive field (Ec) is observed to be lower in Mn4+ doped sample. The detailed analysis of the P-E hysteresis loops over the range of temperature from about room temperature to Tot points out that enhanced ferroelectric properties exist in this temperature range with better thermal stability for the Mn4+ doped ceramic. The study reveals that small traces of Mn4+ can modify (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 system so as to improve its ferroelectric properties with good thermal stability over a wide range of temperature.